If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2+6t+24=0
a = -16; b = 6; c = +24;
Δ = b2-4ac
Δ = 62-4·(-16)·24
Δ = 1572
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1572}=\sqrt{4*393}=\sqrt{4}*\sqrt{393}=2\sqrt{393}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{393}}{2*-16}=\frac{-6-2\sqrt{393}}{-32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{393}}{2*-16}=\frac{-6+2\sqrt{393}}{-32} $
| 720=n/2(21+3) | | 2c-4=12.6 | | 68+36=4x | | 12x+20x=400 | | 6x-6x+2=10 | | 5x-4=6x+19 | | 3=7v÷12+10 | | 2x+3=12x-9 | | X+4y=145 | | 845=5x(+16) | | XxY=132 | | 7(2x-3)=5(3+2x) | | 5(4x+3)-18(x+2)=-15 | | 9×2^(x-1)=2×3^x | | -5/4(x-8)=7/8 | | x^2-5x+3x-15=20 | | -9=-6m+3 | | 8x-16+6x-60=180 | | 25=5+5z | | z+1/6=2z+5/6 | | z+1/6=2z=5/6 | | M+4m+20=-25 | | -11=9+10w | | -2+10z=28 | | 1,8x=2,5+x | | 10=3n-5 | | -3u-8=10 | | 0.18x+x=112 | | 5x-2(17-3x)=21 | | 3x+7=-7x-4 | | 5^(2x+1)/5^(3x-2)=25^(-2) | | 24=2(v+3)-4v |